Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(5): 688-698, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382015

RESUMO

Campylobacter jejuni is a human pathogen and a leading cause of food poisoning in North America and Europe. The exterior surface of the bacterial cell wall is attached to a polymeric coat of sugar molecules known as the capsular polysaccharide (CPS) that helps protect the organism from the host immune response. The CPS is composed of a repeating sequence of common and unusual sugar residues. In the HS:11 serotype of C. jejuni, we identified two enzymes in the gene cluster for CPS formation that are utilized for the biosynthesis of UDP-α-N-acetyl-d-mannosaminuronic acid (UDP-ManNAcA). In the first step, UDP-α-N-acetyl-d-glucosamine (UDP-GlcNAc) is epimerized at C2 to form UDP-α-N-acetyl-d-mannosamine (UDP-ManNAc). This product is then oxidized by a NAD+-dependent C6-dehydrogenase to form UDP-ManNAcA. In the HS:6 serotype (C. jejuni strain 81116), we identified three enzymes that are required for the biosynthesis of CMP-ß-N-acetyl-d-neuraminic acid (CMP-Neu5Ac). In the first step, UDP-GlcNAc is epimerized at C2 and subsequently hydrolyzed to form N-acetyl-d-mannosamine (ManNAc) with the release of UDP. This product is then condensed with PEP by N-acetyl-d-neuraminate synthase to form N-acetyl-d-neuraminic acid (Neu5Ac). In the final step, CMP-N-acetyl-d-neuraminic acid synthase utilizes CTP to convert this product into CMP-Neu5Ac. A bioinformatic analysis of these five enzymes from C. jejuni serotypes HS:11 and HS:6 identified other bacterial species that can produce UDP-ManNAcA or CMP-Neu5Ac for CPS formation.


Assuntos
Campylobacter jejuni , Monofosfato de Citidina/análogos & derivados , Ácidos Siálicos , Ácidos Urônicos , Humanos , Polissacarídeos , Ácidos Neuramínicos , Açúcares , Difosfato de Uridina
2.
Biochemistry ; 63(5): 699-710, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386885

RESUMO

Campylobacter jejuni is a Gram-negative pathogenic bacterium commonly found in chickens and is the leading cause of human diarrheal disease worldwide. The various serotypes of C. jejuni produce structurally distinct capsular polysaccharides (CPSs) on the exterior surfaces of the cell wall. The capsular polysaccharide from C. jejuni serotype HS:5 is composed of a repeating sequence of d-glycero-d-manno-heptose and d-glucitol-6-phosphate. We previously defined the pathway for the production of d-glycero-d-manno-heptose in C. jejuni. Here, we elucidate the biosynthetic pathway for the assembly of cytidine diphosphate (CDP)-6-d-glucitol by the combined action of two previously uncharacterized enzymes. The first enzyme catalyzes the formation of CDP-6-d-fructose from cytidine triphosphate (CTP) and d-fructose-6-phosphate. The second enzyme reduces CDP-6-d-fructose with NADPH to generate CDP-6-d-glucitol. Using sequence similarity network (SSN) and genome neighborhood network (GNN) analyses, we predict that these pairs of proteins are responsible for the biosynthesis of CDP-6-d-glucitol and/or CDP-d-mannitol in the lipopolysaccharides (LPSs) and capsular polysaccharides in more than 200 other organisms. In addition, high resolution X-ray structures of the second enzyme are reported, which provide novel insight into the manner in which an open-chain nucleotide-linked sugar is harbored in an active site cleft.


Assuntos
Campylobacter jejuni , Animais , Humanos , Sorbitol/metabolismo , Galinhas/metabolismo , Polissacarídeos/metabolismo , Cistina Difosfato/metabolismo , Frutose/metabolismo , Polissacarídeos Bacterianos/metabolismo
3.
Biochemistry ; 62(21): 3145-3158, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37890137

RESUMO

Campylobacter jejuni is the leading cause of food poisoning in North America. The exterior surface of this bacterium is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different carbohydrates that is anchored to the outer membrane. Heptoses of various configurations are among the most common monosaccharides that have been identified within the CPS. It is currently thought that all heptose variations derive from the modification of GDP-d-glycero-α-d-manno-heptose (GMH). From the associated gene clusters for CPS biosynthesis, we have identified 20 unique enzymes with different substrate profiles that are used by the various strains and serotypes of C. jejuni to make six different stereoisomers of GDP-6-deoxy-heptose, four stereoisomers of GDP-d-glycero-heptoses, and two stereoisomers of GDP-3,6-dideoxy-heptoses starting from d-sedoheptulose-7-phosphate. The modification enzymes include a C4-dehydrogenase, a C4,6-dehydratase, three C3- and/or C5-epimerases, a C3-dehydratase, eight C4-reductases, two pyranose/furanose mutases, and four enzymes for the formation of GMH from d-sedoheptulose-7-phosphate. We have mixed these enzymes in different combinations to make novel GDP-heptose modifications, including GDP-6-hydroxy-heptoses, GDP-3-deoxy-heptoses, and GDP-3,6-dideoxy-heptoses.


Assuntos
Campylobacter jejuni , Humanos , Polissacarídeos/metabolismo , Heptoses , Redes e Vias Metabólicas , Hidroliases/metabolismo , Fosfatos/metabolismo
4.
Biochemistry ; 62(7): 1287-1297, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943186

RESUMO

Campylobacter jejuni is the leading cause of food poisoning in the United States. Surrounding the exterior surface of this bacterium is a capsular polysaccharide (CPS) that helps protect the organism from the host immune system. The CPS is composed of a repeating sequence of common and unusual sugar residues, including relatively rare heptoses. In the HS:5 serotype, we identified four enzymes required for the biosynthesis of GDP-3,6-dideoxy-ß-l-ribo-heptose. In the first step, GDP-d-glycero-α-d-manno-heptose is dehydrated to form GDP-6-deoxy-4-keto-α-d-lyxo-heptose. This product is then dehydrated by a pyridoxal phosphate-dependent C3-dehydratase to form GDP-3,6-dideoxy-4-keto-α-d-threo-heptose before being epimerized at C5 to generate GDP-3,6-dideoxy-4-keto-ß-l-erythro-heptose. In the final step, a C4-reductase uses NADPH to convert this product to GDP-3,6-dideoxy-ß-l-ribo-heptose. These results are at variance with the previous report of 3,6-dideoxy-d-ribo-heptose in the CPS from serotype HS:5 of C. jejuni. We also demonstrated that GDP-3,6-dideoxy-ß-l-xylo-heptose is formed using the corresponding enzymes found in the gene cluster from serotype HS:11 of C. jejuni. The utilization of different C4-reductases from other serotypes of C. jejuni enabled the formation of GDP-3,6-dideoxy-α-d-arabino-heptose and GDP-3,6-dideoxy-α-d-lyxo-heptose.


Assuntos
Campylobacter jejuni , Polissacarídeos , Oxirredutases/química , Família Multigênica
5.
Biochemistry ; 62(1): 134-144, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534477

RESUMO

Campylobacter jejuni is a human pathogen and the leading cause of food poisoning in the United States and Europe. Surrounding the exterior surface of this bacterium is a capsular polysaccharide (CPS) that consists of a repeating sequence of common and unusual carbohydrate segments. At least 10 different heptose sugars have thus far been identified in the various strains of C. jejuni. The accepted biosynthetic pathway for the construction of the 6-deoxy-heptoses begins with the 4,6-dehydration of GDP-d-glycero-d-manno-heptose by a dehydratase, followed by an epimerase that racemizes C3 and/or C5 of the product GDP-6-deoxy-4-keto-d-lyxo-heptose. In the final step, a C4-reductase catalyzes the NADPH reduction of the resulting 4-keto product. However, in some strains and serotypes of C. jejuni, there are two separate C4-reductases with different product specificities in the gene cluster for CPS formation. Five pairs of these tandem C4-reductases were isolated, and the catalytic properties were ascertained. In four out of five cases, one of the two C4-reductases is able to catalyze the isomerization of C3 and C5 of GDP-6-deoxy-4-keto-d-lyxo-heptose, in addition to the catalysis of the reduction of C4, thus bypassing the requirement for a separate C3/C5-isomerase. In each case, the 3'-end of the gene for the first C4-reductase contains a poly-G tract of 8-10 guanine residues that may be used to control the expression and/or catalytic activity of either C4-reductase. The three-dimensional structure of the C4-reductase from serotype HS:15, which only does a reduction of C4, was determined to 1.45 Å resolution in the presence of NADPH and GDP.


Assuntos
Campylobacter jejuni , Oxirredutases , Humanos , Oxirredutases/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , NADP/metabolismo , Polissacarídeos/metabolismo , Heptoses
6.
Biochemistry ; 61(18): 2036-2048, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36093987

RESUMO

Campylobacter jejuni is a human pathogen and one of the leading causes of food poisoning in Europe and the United States. The outside of the bacterium is coated with a capsular polysaccharide that assists in the evasion of the host immune system. Many of the serotyped strains of C. jejuni contain a 6-deoxy-heptose moiety that is biosynthesized from GDP-d-glycero-d-manno-heptose by the successive actions of a 4,6-dehydratase, a C3/C5-epimerase, and a C4-reductase. We identified 18 different C3/C5-epimerases that could be clustered together into three groups at a sequence identity of >89%. Four of the enzymes from the largest cluster (from serotypes HS:3, HS:10, HS:23/36, and HS:41) were shown to only catalyze the epimerization at C3. Three enzymes from the second largest cluster (HS:2, HS:15, and HS:42) were shown to catalyze the epimerization at C3 and C5. Enzymes from the third cluster were not characterized. The three-dimensional structures of the epimerases from serotypes HS:3, HS:23/36, HS:15, and HS:41 were determined to resolutions of 1.5-1.9 Å. The overall subunit architecture places these enzymes into the diverse "cupin" superfamily. Within X-ray coordinate error, the immediate regions surrounding the active sites are identical, suggesting that factors extending farther out may influence product outcome. The X-ray crystal structures are consistent with His-67 and Tyr-134 acting as general acid/base catalysts for the epimerization of C3 and/or C5. Two amino acid changes (A76V/C136L) were enough to convert the C3-epimerase from serotype HS:3 to one that could now catalyze the epimerization at both C3 and C5.


Assuntos
Campylobacter jejuni , Aminoácidos/metabolismo , Hidroliases/metabolismo , Oxirredutases/metabolismo , Polissacarídeos/metabolismo , Racemases e Epimerases/metabolismo
7.
Biochemistry ; 61(19): 2138-2147, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36107882

RESUMO

Campylobacter jejuni is the leading cause of food poisoning in the United States and Europe. A capsular polysaccharide that coats the exterior of the bacterium helps evade the host immune system. At least 33 different strains of C. jejuni have been identified, and the chemical structures of 12 different capsular polysaccharides (CPSs) have been characterized from various serotypes. Thus far, 10 different heptose sugars have been found in the chemically characterized CPSs, and each of these are currently thought to originate from the modification of GDP-d-glycero-d-manno-heptose by the successive action of 4,6-dehydratase (or C4-dehydrogenase), C3- or C3/C5-epimerase, and C4-reductase. Within the sequenced strains of C. jejuni, we have identified 25 different C4-reductases that cluster into nine groups at a sequence identity of >90%. Eight of the proteins from seven different clusters were purified, and their product profiles were determined with GDP-6-deoxy-4-keto-heptose substrates using NMR and ESI mass spectrometry. The isolated products included GDP-6-deoxy-l-gluco-heptose (serotype HS:2), GDP-6-deoxy-l-galacto-heptose (serotype HS:42), GDP-6-deoxy-l-gulo-heptose (serotype HS:15), GDP-6-deoxy-d-ido-heptose (serotypes HS:3, HS:4, and HS:33), GDP-6-deoxy-d-manno-heptose (serotype HS:53), and GDP-6-deoxy-d-altro-heptose (serotype HS:23/36). Based on these observations, the product specificity can be reliably predicted for 14 additional C4-reductases from C. jejuni. The remaining three C4-reductases are highly likely to be required for the biosynthesis of 3,6-dideoxy-heptose products.


Assuntos
Campylobacter jejuni , Campylobacter jejuni/metabolismo , Heptoses , Hidroliases/metabolismo , Oxirredutases/metabolismo , Polissacarídeos/metabolismo , Racemases e Epimerases/metabolismo
8.
J Am Chem Soc ; 144(25): 11270-11282, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35652913

RESUMO

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α2ß2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and ß, to initiate, using its metallo-cofactor in ß2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y356(ß) and Y731(α) across the α/ß interface. Using 2,3,5-F3Y122-ß2 with 3,5-F2Y731-α2, GDP (substrate) and TTP (allosteric effector), a Y356• intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron-electron double resonance spectroscopies. 94 GHz 19F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y356• and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the double mutant E52Q/F3Y122-ß2 were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with 3,5-F2Y731 within the H-bond distance to Y356•, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y356 and Y731. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.


Assuntos
Ribonucleotídeo Redutases , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Escherichia coli/metabolismo , Flúor , Modelos Moleculares , Oxirredução , Prótons , Ribonucleotídeo Redutases/química , Tirosina/química
9.
Biochemistry ; 61(13): 1313-1322, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35715226

RESUMO

Campylobacter jejuni is a human pathogen and a leading cause of food poisoning in the United States and Europe. Surrounding the outside of the bacterium is a carbohydrate coat known as the capsular polysaccharide. Various strains of C. jejuni have different sequences of unusual sugars and an assortment of decorations. Many of the serotypes have heptoses with differing stereochemical arrangements at C2 through C6. One of the many common modifications is a 6-deoxy-heptose that is formed by dehydration of GDP-d-glycero-α-d-manno-heptose to GDP-6-deoxy-4-keto-d-lyxo-heptose via the action of the enzyme GDP-d-glycero-α-d-manno-heptose 4,6-dehydratase. Herein, we report the biochemical and structural characterization of this enzyme from C. jejuni 81-176 (serotype HS:23/36). The enzyme was purified to homogeneity, and its three-dimensional structure was determined to a resolution of 2.1 Å. Kinetic analyses suggest that the reaction mechanism proceeds through the formation of a 4-keto intermediate followed by the loss of water from C5/C6. Based on the three-dimensional structure, it is proposed that oxidation of C4 is assisted by proton transfer from the hydroxyl group to the phenolate of Tyr-159 and hydride transfer to the tightly bound NAD+ in the active site. Elimination of water at C5/C6 is most likely assisted by abstraction of the proton at C5 by Glu-136 and subsequent proton transfer to the hydroxyl at C6 via Ser-134 and Tyr-159. A bioinformatic analysis identified 19 additional 4,6-dehydratases from serotyped strains of C. jejuni that are 89-98% identical in the amino acid sequence, indicating that each of these strains should contain a 6-deoxy-heptose within their capsular polysaccharides.


Assuntos
Campylobacter jejuni , Proteínas de Bactérias/química , Heptoses/química , Humanos , Hidroliases/metabolismo , Prótons , Água/metabolismo
10.
Biochemistry ; 57(18): 2679-2693, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29609464

RESUMO

A ribonucleotide reductase (RNR) from Flavobacterium johnsoniae ( Fj) differs fundamentally from known (subclass a-c) class I RNRs, warranting its assignment to a new subclass, Id. Its ß subunit shares with Ib counterparts the requirements for manganese(II) and superoxide (O2-) for activation, but it does not require the O2--supplying flavoprotein (NrdI) needed in Ib systems, instead scavenging the oxidant from solution. Although Fj ß has tyrosine at the appropriate sequence position (Tyr 104), this residue is not oxidized to a radical upon activation, as occurs in the Ia/b proteins. Rather, Fj ß directly deploys an oxidized dimanganese cofactor for radical initiation. In treatment with one-electron reductants, the cofactor can undergo cooperative three-electron reduction to the II/II state, in contrast to the quantitative univalent reduction to inactive "met" (III/III) forms seen with I(a-c) ßs. This tendency makes Fj ß unusually robust, as the II/II form can readily be reactivated. The structure of the protein rationalizes its distinctive traits. A distortion in a core helix of the ferritin-like architecture renders the active site unusually open, introduces a cavity near the cofactor, and positions a subclass-d-specific Lys residue to shepherd O2- to the Mn2II/II cluster. Relative to the positions of the radical tyrosines in the Ia/b proteins, the unreactive Tyr 104 of Fj ß is held away from the cofactor by a hydrogen bond with a subclass-d-specific Thr residue. Structural comparisons, considered with its uniquely simple mode of activation, suggest that the Id protein might most closely resemble the primordial RNR-ß.


Assuntos
Flavoproteínas/química , Manganês/química , Ribonucleotídeo Redutases/química , Superóxidos/química , Catálise , Domínio Catalítico , Flavobacterium/química , Flavobacterium/enzimologia , Flavoproteínas/metabolismo , Ferro/química , Oxirredução , Oxigênio/química , Ribonucleotídeo Redutases/classificação , Ribonucleotídeo Redutases/metabolismo , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...